SHIVAJI UNIVERSITY, KOLHAPUR - 416 004, MAHARASHTRA

www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर - ४१६ ००४,महाराष्ट्र

दूरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दुरध्वनी ०२३१–२६०९०९३/९४

SU/BOS/Science/497

To,

The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Institutions	All Concerned Department (Science)
9	
Shivaji University, Kolhapur	Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 degree programme under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 degree programme under the Faculty of Science and Technology.

	M.Sc.Part-II (Sem. III & IV) as per NEP-2020				
1.	Microbiology (HM)	8.	Food Science & Nutrition		
2.	Pharmaceutical Microbiology (HM)	9.	Food Science & Technology		
3.	Microbiology	10.	Biochemistry		
4.	Computer Science	11.	Biotechnology		
5.	Computer Science (Online Mode)	12.	Medical Information Management		
6.	Data Science	13.	Environmental Science		
7.	Information Technology (Entire)	14.	Physics		

This syllabus, nature of question and equivalence shall be implemented from the academic year 2023-2024 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in</u>)

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2023 & March/April 2024. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Dy Registrar Dr. S. M. Kubal

/

Copy to:

Cop			
1	The Dean, Faculty of Science & Technology	8	P.G. Admission/Seminar Section
2	Director, Board of Examinations and Evaluation	9	Computer Centre/ Eligibility Section
3	The Chairman, Respective Board of Studies	10	Affiliation Section (U.G.) (P.G.)
4	B.Sc. Exam/ Appointment Section	11	Centre for Distance Education

Date: 10/07/2023

NAAC(2021) With CGPA 3.52

Choice Based Credit System with Multiple Entry and Multiple Exit Option (NEP-2020) M.Sc. Programme Structure M.Sc. Part – II (Level-9) M.Sc. Biotechnology (Horizontal Mobility) CBCS Pattern

			SEMES	TER-III (Dı	iration- S	Six month)					
	Sr.	Course code	Tea	Teaching Scheme Examination Scheme							
	No.		Theor	ry and Practic	cal	Universit	y Assessmen	t (UA)	Interna	l Assessment	E(IA)
			Lectures	Hours	Credit	Maximum	Minimum	Exam.	Maximum	Minimum	Exam.
			(per week)	(per week)		Marks	Marks	Hours	Marks	Marks	Hours
CGPA	1	CC-301: Genetic Engineering	4	4	4	80\$	32	3	20	8	1
	2	CCS-302: Advances in Plant Biotechnology	4	4	4	80\$	32	3	20	8	1
	3	CCS-303: Fermentation Technology-I	4	4	4	80\$	32	3	20	8	1
	4	DSE-304: Immunology	4	4	4	80\$	32	3	20	8	1
	5	CCPR-305: Laboratory Course	16	16	8	200*	80	-	-	-	#
Total (C)		· · · · · · · · · · · · · · · · · · ·	-	-	24	520	-	-	80	-	-
	1	AEC-306	2	2	2	-	-	-	50	20	2
	2	EC (SWMMOOC)-307	Number of le	ectures and cre	dit shall be	e as specified o	on SWAYAM	MOOC			
Non-CGPA											
	T	1		TER-IV (Du	iration- S						
CGPA	1	CC-401: Animal Tissue Culture	4	-	4	80\$	32	3	20	8	1
	2	CCS-402A: Advances in Genomic and Proteomics	cs 4	4	4	80\$	32	3	20	8	1
	3	CCS-403: Bioinformatics	4	4 4	4	80\$	32	3	20	8	1
	4	DSE-404A: Nanobiotechnology OR DSE-404B: Fermentation Technology-II	4	4	4	80\$	32	3	20	8	1
	5	CCPR-405:Laboratory Course an Project	d 16	16	8	200*	80	-	-	-	#
Total (D)		· · ·	-	- 1	24	520	-	-	80	-	-
Non-CGPA	1	SEC-406	2	2	2	-	-	-	50	20	2
	2	GE-407: Gardening and Nursery Management Technique	s 2	2	2	-	-	-	50	20	2
Total (C + D))	· · · · · · · · · · · · · · · · · · ·	-	- 4	48	1040	-	-	160	-	-

1. *Practical Examination will be internal/external as per department choice

2. \$ Question no. 1 of each question paper will be subjective (short answer question instead of objective)

3. # Duration of Practical Examination will be 5 days (1 inspection day and 4 Practical days)

• Student contact hours per week : 32 Hours (Min.)	• Total Marks for M.ScII : 1200			
• Theory and Practical Lectures : 60 Minutes Each	• Total Credits for M.ScII (Semester III & IV) : 48			
 CC-Core Course CCS- Core Course Specialization CCPR-Core Course Practical and Project DSE-Discipline Specific Elective 	 Practical Examination is annual. Examination for CCPR-305 shall be based on Semester III Practical's. Examination for CCPR-405 shall be based on Semester IV Practical's. *Duration of Practical Examination as per respective BOS guidelines 			
 AEC-Mandatory Non-CGPA compulsory Ability Enhancement Course SEC- Mandatory Non-CGPA compulsory Skill Enhancement Course EC (SWM MOOC) - Non-CGPA Elective Course GE- Multidisciplinary Generic Elective 	• Separate passing is mandatory for Theory, Internal and Practical Examination			
 Requirement for Entry at Level 9: Completed all requirements of the relevant Post Graduate Diploma (Level 8) in Diploma in Biotechnology Exit at Level 9: Students will exit after Level 9 with Master's Degree in Biotechnology if he/she completes the courses equivalent to minimum of 96 credits. 				

	M.ScI	M.ScII	Total
Marks	1200	1200	2400
Credits	48	48	96

I. CGPA course:

- 1. There shall be 10 Core Courses (CC)per programme.
- 2. There shall be 04 Core Course Practical's (CCPR) per programme.
- 3. There shall be 04 Core Course Specialization (CCS)of 16 credits per programme.
- 4. There shall be 02 Discipline Specific Elective (DSE) courses of 08 credits per programme
- 5. Total credits for CGPA courses shall be of 96 credits per programme

II. Mandatory Non-CGPA Courses:

- 1. There shall be 02 Mandatory Non-CGPA compulsory Ability Enhancement Courses (AEC I and II) of 02 credits each per programme.
- 2. There shall be 02 Mandatory Non-CGPA compulsory Skill Enhancement Course (SEC I and II) of 02 credits per programme.

- 3. There shall be one Elective Course (EC) (SWAYAM MOOC). The credits of this course shall be as specified on SWAYAM MOOC.
- 4. There shall be one Generic Elective (GE) course of 02 credits per programme. Each student has to take generic elective from the department other than parent department.
- 5. The total credits for Non-CGPA course shall be of 08 credits + 2-4 credits of EC as per availability.
- 6. The credits assigned to the course and the programme are to be earned by the students and shall not have any relevance with the work load of the teacher.

Shivaji University, Kolhapur

Accredited By NAAC with 'A++' grade with CGPA 3.52

Syllabus for

Master of Science (M.Sc.)

In

Biotechnology

(Under Science Faculty)

Part II

(Subject to modifications to be made time to time)

Syllabus to be implemented from 2022-2023

MSc. Biotechnology Part II Syllabus

SEMESTER III

CC 301	: Genetic Engineering
CCS 302	: Advances in Plant Biotechnology
CCS 303	: Fermentation Technology-I
DSE 304	: Immunology
CCPR 305 AEC 306 EC 307 (SWMMOOC)	: Laboratory Course : Mandatory Non-CGPA compulsory Ability Enhancement Course : Non-CGPA Elective Course : Food Microbiology and Food Safety
	SEMESTER IV
CC 401 CCS 402A	: Animal Tissue Culture : Advances in Genomics and Proteomics
CCS 402 B	OR : Microbial Fermentation Technology
CCS 403 DSE 404 A	: Bioinformatics : Nanobiotechnology OR
DSE 404 B	: Fermentation Technology– II OR
CCPR 405 SEC 406 GE 407	: Laboratory Course and Dissertation (Project) : Mandatory Non-CGPA compulsory Skill Enhancement Course : Generic Elective: Gardening and Nursery management techniques'

	SEMESTER III	
	CC 301: Genetic Engineering	60 Hrs
Unit I	Basics Of Recombinant DNA TechnologyRestriction analysis: Types of restriction enzyme, Type I, II andIII, restriction modification systems, type II restrictionendonucleases and properties, isoschizomers and neoschizomers,mcr/mrr genotypes, Cohesive and blunt end ligation, linkers,adaptors, homopolymeric tailing.	15 Hrs
	Labeling of DNA:Nick translation, random priming, radioactive and non-radioactive probes, use of Klenow enzyme, T4 DNA polymerase, bacterial alkaline phosphatase, polynucleotide kinase.	

	 Hybridization techniques: Northern, Southern, Western and Colony hybridization, Fluorescence in situ hybridization, Restriction maps and mapping techniques, DNA fingerprinting, chromosome walking & chromosome jumping. DNA-Protein Interactions: Electro mobility shift assay, DNase I footprinting, methyl interference assay. 	
Unit II	Cloning VectorsGene Cloning Vectors: Plasmids (Natural and synthetic), bacteriophages, M13, MP vectors, phagemids, Lambda vectors; insertion and replacement vectors, EMBL, λ DASH, λ gt10/11, λ ZAP etc. Cosmid vectors. Artificial chromosome vectors (YACs, BACs), Animal Virus derived vectors- SV-40, vaccinia/bacculo& retroviral vectors. Expression vectors; pMal, GST, pET-based vectors Baculovirus and <i>Pichia</i> vectors system. Applications: His-tag, GST-tag, MBP-tag etc. Restriction proteases, intein-based vectors. Inclusion bodies, methodologies to reduce formation of inclusion bodies.	15 Hrs
Unit III	 Cloning Methodologies Insertion of Foreign DNA into Host Cells: Transformation, Transduction, Conjugation, Transfection: Chemical and physical methods, liposomes, microinjection, macroinjection, electroporation, biolistics, somatic cell fusion, gene transfer by pronuclear microinjection. Plant transformation technology: Basis of tumor formation, hairy root, features of Ti and Ri plasmids, mechanism of DNA transfer, role of virulence genes, use of Ti and Ri as vectors. Cloning and expression in yeasts (Saccharomyces, Pichia etc.), animal and plants cells, methods of selection and screening, cDNA and genomic cloning, expression cloning, yeast two hybrid system, phage display. DNA Libraries: Construction of cDNA libraries in plasmids and screening methodologies, Construction of cDNA and genomic DNA libraries in lambda vector, jumping libraries. Principles in maximizing gene expression.	15 Hrs
Unit IV	PCRPrimer design, Fidelity of thermostable enzymes, DNApolymerases, Types of PCR: multiplex, nested, reversetranscriptase, real time, touchdown, hot start, colony, cloning ofPCR products, T-vectors, proof reading enzymes, PCR in generecombination, deletion, addition, overlap extension, and SOEing,site directed mutagenesis, PCR in molecular diagnostics, viral andbacterial detection, PCR based mutagenesis.Applications	15 Hrs

Sequencing methods: Enzymatic DNA sequencing, Chemical	
sequencing of DNA, principle of automated DNA sequencing,	
NextGene DNA sequencing Methods (SOLiD, Ilumina and	
pyrosequencing), RNA sequencing, Chemical Synthesis of	
oligonucleotides.	
Gene silencing techniques: Introduction to siRNA and siRNA	
technology, micro RNA, construction of siRNA vectors, principle	
and application of gene silencing. CRISPR, CRISPR/Cas9	
technology.	
Gene knockouts and Gene Therapy: Creation of knockout mice,	
disease model, somatic and germ-line therapy in vivo and ex-vivo,	
suicide gene therapy, gene replacement, gene targeting.	
Other applications: Transgenics, Genome projects and their	
implications, application in global gene expression analysis.	
Applications of recombinant DNA technology in medicine,	
agriculture, veterinary sciences and protein engineering.	
"G mane, " eterming serences and protein engineering,	

- 1. Sambrook J, Fritsch E. F. and Maniatis (1989) Molecular cloning, vol. I, II, III, II nd edition, Cold spring harbor laboratory press, New York.
- 2. DNA Cloning : A practical approach D.M. Glover and D.B. Hames, RL Press, Oxford, 1995
- 3. Molecular and cellular methods in Biology and Medicine, P.B. Kaufman, W. Wu , D. Kim and L.J. Cseke, CRC Press Florida 1995
- 4. Methods in Enzymology Guide to Molecular Cloning Techniques, Vol. 152 S.L. Berger and A. R. Kimmel, Academic Press Inc, San Diego, 1996
- Methods in Enzymology Gene Expression Technology, Vol. 185D. V. Goedel, Academic Press Inc, San Diego, 1990
- 6. DNA Science: A First Course in Recombinant Technology, D. A. Mickloss and G. A Freyer, Cold Spring Harbor Laboratory Press, New York, 1990
- 7. Molecular Biotechnology, 2nd Ed. S. B. Primrose, Blackwell Scientific publishers, Oxford, 1994
- 8. Milestones in Biotechnology, Classic Papers on Genetic Engineering, J. A. Davis and W. S. Reznikoff, Butterworth-Heinemann Boston 1992
- 9. Route Maps in Gene Technology, M. R. Walker, and R. Rapley, Blakwell Science, Oxford, 1997
- 10. Genetic Engineering : An Introduction to Gene Analysis and Exploitation in Eukaryotes, S. M. Kingsman, Blackwell Scientific Publications, Oxford, 1998
- 11. An Introduction to Genetic Engineering, 3rd Edition. Desmond S. T. Nicholl, Cambridge University press, 2008.
- 12. Gene Cloning and Manipulation, 2nd Ed. Cristopher Howe, Cambridge University Press, 2007.

	CCS-302: Advances in Plant Biotechnology	60 Hrs
Unit I	Plant protection: Diseases of field, vegetable, orchard and plantation crops of India and their control; causes and classification of plant diseases; principles of plant disease control biological control of diseases; seed health testing, Integrated pest management-concepts and components; host plant resistance- biological control of insect pests; genetic manipulation of insects for their control; pesticides, their formulation, classification and safe use; behavioural methods; insect growth regulators; biotechnological approaches in IPM	15 Hrs
Unit II	Secondary metabolites: Concept of secondary metabolites, their applications in agriculture and health industry. <i>In vitro</i> production of secondary metabolites: introduction to secondary metabolism, significance of cell differentiation, selection, downstream processing, influence of culture conditions on accumulation of secondary metabolites, immobilization of cells for enhanced production of secondary products, biotic and abiotic elicitation. Different techniques involved in isolation, purification and characterization of useful secondary metabolites from cultured cells	15 Hrs
Unit III	Transgenic techniques in plant biotechnology: introduction of foreign gene into plants, basics of tumor formation, hairy root culture and its uses, features of Ti &Ri plasmid, mechanism of DNA transfer, role of virulence gene, use of reporter gene, multiple gene transfers, vector less or direct DNA transfer, particle bombardment, electroporation, microinjection, chloroplast transformation. Applications of plant transformation for enhancing resistance to pests, productivity & performance, nutritional value, modification of ornamental plants, bioengineered food, edible vaccines, plantibodies, biopharming.	15 Hrs
Unit IV	Functional Food: What is functional food? Functional food from plant sources, safety issues. Algal and Moss biotechnology: Biotechnological importance of algae, Growth in laboratory, algal farming, Techniques involved in algae biotechnology, Genetic engineering of algae for enhanced production of industrially important products, Biotechnology involving <i>Cyanobacteria</i> . Biofuels.Synthetic Biology: Introduction and applications in PTC	15 Hrs

- 1. Slater, Plant Biotechnology, OUP
- 2. H.E Street(ed): Tissue culture and Plant science, Academic press, London, 1974
- 3. M.K.Sateesh, Biotechnology-5 Animal cell biotechnology Immune biotechnology Plant biotechnology New Age Int Publishers,2003
- 4. Concepts in Biotechnology D. Balasubramaniam, Bryce, Dharmalingam, Green, Jayaraman Univ. Press, 1996

	CCS 303 : Fermentation Technology-I	60 Hrs
Unit I	Upstream Processing Microbial cell growth, kinetics and stoichiometry, various methods for growth measurement, strain improvement by mutation, genetic engineering, etc. Overproduction of metabolites, alternative carbon and nitrogen sources and their composition. Development of innocula for industrial fermentation, design of industrial production media. Alternate metabolic routines for utilization of carbon sources with their regulation and inter-linkage especially for glucose and hydrocarbons, preservation and maintenance of microbes.	15 Hrs
Unit II	Fermentation Design of fermenter, construction materials, various sterilization techniques for solid, liquid and gases, aeration and agitation, foam, auxillaryequipments. Control of various parameters – online and offline monitoring, rheological properties of fermenter, role of computer in fermenter operation.	15 Hrs
Unit III	Batch, fed-batch, continuous fermentation and solid state fermentation.Effluent treatment, scale up and scale down. Types of fermenters, process economics, fermentation economics.	15 Hrs
Unit IV	Downstream Processing Principle, methodology, instrumentation and applications of cell homogenization techniques liquid-liquid extraction centrifugation, filtration, , distillation, ultrafiltration, precipitation, adsorption chromatography, ion exchange chromatography, gel filtration and affinity chromatography in clarification, concentration, isolation and purification of various metabolites from fermented media	15 Hrs

- 1. Moo-Young M. ed. (1985) Comprehensive Biotechnology vol: I & II, Pergamon Press N.Y.
- 2. Ratledge C and Kristiansen B. eds. (2001) Basic Biotechnology 2nd ed. Cambridge Univ Press Cambridge.
- Old R.W and Primose S.D (1995) Principles of Gene Manipulation 5th ed. Blackwell Scientific Pub. Oxford.
- 4. Bailey J.E and Ollis D.F. (1986) Biochemical Engineering Fundamentals 2nd ed. McGraw Hill Book Company, N. Delhi.
- Aiba S, Humphrey A. E. and N. F. Millis (1973) Biochemical Engineering, 2nd Edition University of Tokyo Press, Tokyo, Japan.
- 6. Stanbury P.F., Whitaker A, and Hall S.J. (1997) Principles of Fermentation Technology 2 nded.Aditya Books Pvt. Ltd, N.Delhi.
- 7. Mukhopadhaya S.N. (2001) Process Biotechnology Fundamentals. Viva Books Pvt. Ltd. N.Delhi.
- 8. Rehm H.J and Reed G. (1985) Biotechnology vol. I & II. VCH, Basel.
- 9. Stainer R. Y. Ingrahm J. L., Wheelis M. L. and Painter P. R. (1987) General Microbiology 5th Edition, Macmillan Press Ltd. London.

	DSE 304 : Immunology	60 Hrs
Unit I	 Immunology – fundamentals and anatomy of immune system A) Immunity – Innate and acquired immunity. Components of innate and acquired immunity. B) Antigen, Haptens, adjuvants, mitogens. Antibodies – structure, functions. C) The anatomy of the immune response: - Cells and organs of immune system. Regulation of immune response – Humoral and Cell mediated response. 	15 Hrs
Unit II	 Immunity to infection A) Antigen processing and presentation, MHC, complement system, T & B cell activation. B) Bacterial, viral, protozoal and parasitic infections with reference to (Diphtheria, influenza virus, malaria and helminthes) with specific representative examples of each group. C) Vaccines – Active and passive immunization, DNA vaccines, multivalent subunit vaccines, synthetic peptide vaccines. 	15 Hrs
Unit III	Clinical ImmunologyA) Hypersensitivity: - Type I, II, III, and IV reactions.Autoimmunity - organ specific and systemic autoimmunediseases. Treatment of autoimmune diseases.B) Transplantation and tumor immunology: - Graft rejection,	15 Hrs

	 tissue typing, immunosuppressive therapy and clinical transplantation. Tumor antigens, cancer immunotherapy. C) Immunodeficiency diseases - Phagocytic, humoral, cell mediated deficiencies and SCID. AIDS- causes, syndrome, diagnostic tools, treatment and development of vaccine 	
Unit IV	 Immunotechnology A) Antigen antibody interactions – Principles, types and applications of agglutination, precipitation, complement fixation, viral neutralization, immunodiffusion, immunoelectrophoresis, ELISA and RIA. B) Monoclonal antibodies – Hybridoma technology and various cellular technologies. C) Automation in immunological techniques – auto analyzers used in immunology, FACS etc. 	15 Hrs

1. Kuby : Immunology; RA Goldsby, Thomas J. Kindt, Barbara A. Osborne.

2. Immunology by Roitt I. M., Brostoff J. and Male D. Gower medical publishing

London.

3. Fundamentals of immunology 4th ed., Paul 1999, Lippencott Raven.

	CCPR 305: Laboratory Course	(120 hrs) 200 Marks
	Part A	
1.	Estimation of IAA	
2.	Determination of activity of enzyme IAA oxidase	
3.	Induction of beta galactosidase in E. coli.	
4.	Assay of antibiotics and demonstration of antibiotic re	esistance.
5.	Isolation of organic acid and amine producers and bio	ochemical characterization
	of isolated microbes.	
6.	SDS page/ Native Page	
7.	Isolation of Streptomycin resistant mutants.	
8.	Transduction	
9.	Conjugation	
10.	Isolation of bacterial/fungal DNA	
11.	Isolation of plasmid DNA by miniprep/midiprep	

	Part B
1.	Plant tissue culture
2.	Preparation of Media
3.	Surface Sterilization
4.	Organ Culture
5.	Callus Culture, organogenesis
6.	Preparation of glasswares, plasticwares, media and fine chemicals for animal
	cell cultures.
7.	Culturing, maintenance and passaging of stock of animal cell cultures
8.	Anther Culture
9.	Synseed preparation
10.	Double diffusion.
11.	Dot ELISA
12.	Radial Immunodiffusion.

- 1. Practical Biochemistry: An Introductory Course by Fiona Frais.
- Methods in Enzymology Vol. I by S.P.Colowick and N.O.Kaplaneds.
 Basic Biochemical Methods 2nded by R.R.Alexander and J.M.Griffith
 Biochemical Methods 2nd ed. by S.Sadasivam and A. Manickam.

- 5. Hawk's Physiological Chemistry ed. by Bernard L Oser.
- 6. A Textbook of Practical Biochemistry by David Plummer.
- 7. Laboratory Manual in Biochemistry by S. Jayaraman.

	AEC 306 : Mandatory Non-CGPA compulsory Ability Enhancement Course	30 Hrs
Unit I	Syllabus and nature of paper will be opted as per committee decision.	15 Hrs
Unit II		15 Hrs

	EC (SWMMOOC) 307 : Non-CGPA Elective Course	
	Food Microbiology and Food Safety	
Unit I	Syllabus and nature of paper will be opted as per swayam portal.	
Unit II		

	SEMESTER IV	
Unit I	CC- 401: Animal Tissue CultureAnimal cell culture: Historical Background, Advantages of Tissue Culture, Control of the Environment, Characterization and Homogeneity of Samples, Economy, Scale, and Mechanization, In vitro Modeling of Conditions, Limitations, Expertise, Quantity, Dedifferentiation and Selection, Origin of Cells, Instability, Major Differences In vitro, Types of Tissue Culture, Laboratory organization: Design of ATC laboratory. Equipment's used in animal tissue culture: Laminar Airflow Hoods, CO2 incubators, microscopes, refrigerators and deep freezers. Aseptic techniques in animal tissue culture.	60 Hrs 15 Hrs
Unit II	Biology of Cultured Cells: The Culture Environment, Cell Adhesion, Cell Motility, Cell Proliferation, Differentiation, Cell Signaling, Energy Metabolism, Origin of Cultured Cells, Initiation of the Culture, Evolution of Cell Lines, Senescence, 	15 Hrs
Unit III	Primary Culture : Initiation of a Primary Cell Culture, Isolation of the Tissue, Types of Primary Culture, Subculture and Cell Lines, Cross-contamination and Misidentification, Mycoplasma Contamination, Naming a Cell Line, Choosing a Cell Line, Routine Maintenance, Significance of Cell Morphology, viable cell count, antibiotic free stock culture. Types of animal cell cultures: monolayes, suspension, clonal culture, mass culture, micro carrier culture (monolayer), stem cell culture (ESC).	15 Hrs
Unit IV	Cell fusion methods: Techniques involved in cell fusion, hybridoma cells: definition; preparation; properties and use of hybridoma technology. Cryopreservation, Principles of Cryopreservation, Cell banks. Cytotoxicity assay, applications of cytotoxicity assays. Culture of tumour cells, 3-D cell culture: 3-D culture in spheroids, Filter well inserts. Troubleshooting: Abnormal cell appearance, slow growth rate, microbial contaminations, poor recovery from cryopreservation.	15 Hrs

- 1. Culture of Animal Cell: R. I. Freshney (Wiley-Liss)
- 2. Animal Cell Culture-Practical Approach: R. W. Jhon (Masters Oxford)
- 3. Biotechnology: U. Satyanarayana (Books & allied Pvt. Ltd.)
- 4. Methods in Cell Biology (Vol. 57)- Animal Cell Culture Methods: J. P. Mathon and D. Barnes (Eds) (Academic Press).
- 5. Mammalian Cell Biotechnology: A Practical Approach (1991): Butler, M. (IRL Press, Oxford)

	CCS-402A: Advances in Genomics and Proteomics (CBCS)	60 Hrs
Unit I	Advance nucleic acidstechniques Instrumentation, types and applications of PFGE and PGFE.Principle, types and applications of DGGE, Types and application of Real time PCR, (quantitative and qualitative), Designing Primers and probes for RT PCR and types.RNA interference and gene silencing (si-RNA, mi-RNA) technology, various blotting techniques. Advanced techniques: CRISPR principle and applications.	15 Hrs
Unit II	DNA sequencing technologies DNA sequencing technologies: Different chemistries in DNA sequencing, Next Generation sequencing (Sanger's sequencing, SOLiD, Pyrosequencing) and applications, genomic library, EST library, cDNA library, Whole genome sequencing, Introduction to the concept of Transcriptomics and Metagenomics, Applications of Transcriptomics and Metagenomics.	15 Hrs
Unit III	PhylogenyIdentification of microbial isolates by 16S rDNA amplificationand sequencing, methods of study of uncultivable microbial florafrom environmental sample, 16S rDNA library, 16S rRNA library,Ribosomal Database Project (RDP), The principles andapplications of DNA based molecular markers. Introduction tometagenomics, its methodology and applications. DNA basedmolecular markers technologies: RAPD, RFLP, AFLP, SCAR,SSR, ISSR, t-RFLP.Introduction to microarray: DNA and RNA microarray,applications and techniques.	15 Hrs
Unit IV	ProteomicsPrinciples and applications, Expressional, Structural and Functional proteomics.Separation and identification of proteins. Techniques in proteomics: HPLC, ESI, MALDI-TOF, Q-TOF, MS/MS, 2-D Gel electrophoresis.	15 Hrs

Protei	n Microarray: Analytical protein microarray, Functional
protei	n microarray and Reverse phase protein microarray. Protein-
Protei	n interaction, Protein-small molecule interaction using SPR
techni	que. Applications of protein microarray.

- 1. Bernard R. Glick and Jack J. Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA.
- 2. Introduction to Bioinformatics, (Atwood, T. K. and Parry-Smith, D. J).
- 3. An introduction to Computational Biochemistry. (C. Stain Tsai, A JohnWiley and Sons, Inc., publications).
- 4. Developing Bioinformatics Computer Skills. (Cynthia Gibas and Per Jambeck).
- 5. Bioinformatics Methods and Applications Genomics, Proteomics and Drug Discovery. (Rastogi S. C. Mendiratta, and Rastogi P.)
- 6. NCBI Web site: http://www.ncbi.nlm.nih.gov
- 7. Molecular Cloning by Sambruk and Russel (Maniatis)

OR

	CCS- 402B: Microbial Fermentation Technology	60 Hrs
Unit I	Fermentation media : Functions of media components, media rheology and Newton's law of viscosity, optimization of medium.	15 Hrs
	Gas diffusion: Oxygen and mass balance transfer relationship, factors affecting gas diffusion.	
	Types of fermentations: Solid surface culture type, liquid surface culture, submerged fermentations.	
Unit II	Culture: Isolation, screening, yield improvement by changing culture techniques, strain improvement and preservation. Growth kinetics and yield kinetics.	15 Hrs

Unit III	Modelling of fermentation processes: Modelling bioprocesses, approaches and techniques of mathematical modelling.	15 Hrs
	Process validation and quality assurance:	
	a) Installation Qualification (IQ), Operational Qualification (OQ) and Performance Qualification (PQ) for laboratory instruments.	
	b) Methods of validation and calibration of equipments	
	c) Documentation: importance and significance	
	d) Current Good Manufacturing Practices (cGMP) and Current Good Laboratory Practices (cGLP).	
Unit IV	Typical fermentation processes: Industrial production of	15 Hrs
	i) Microbial enzymes	
	ii) Bacitracin	
	iii) Streptomycin	
	iv) Riboflavin	
	v) beta-carotene	
	vi) Gibberellins	
	vii) Surfactants	

- 1. Fermentation Microbiology and Biotechnology by M. El-Mansi and C.Bryce
- 2. Principles of fermentation technology by Whitekar, Stanbury and Hall Modelling
- 3. Control of fermentation process by J.R.Leigh
- 4. Microbial Technology Vol. I and II by H.J.Peppler and D.Perlman. Academic Press INC

	CCS 403: Bioinformatics	60 Hrs
Unit I	 Proteomics: Protein Sequence Databases and Analysis Protein sequence information, Primary protein sequence databases, Secondary protein sequence databases, Pair-wise sequence alignment, gaps, gap-penalties, scoring matrices, PAM250, BLOSUM62, local and global sequence alignment, multiple sequence alignment, physicochemical properties using ExPASy, Useful programme; Clustal W. 	

	Proteomics; Strutural Databases, Protein Structure Prediction Structural databases; Protein Data bank (PDB), Nucleic Acid Data Bank (NDB), Molecular modeling Data Bank (MMDB). Homology modeling, three-dimensional structure prediction, protein folding and functional sites.	
Unit II	 Genomics: Nucleotide Sequence Databases And Analysis Human Genome project (HGP); rough and final draft of HGP, goals of the HGP, genomics. Nucleotide Sequence databases: GenBank, EMBL, DNA Data Bank of Japan (DDBJ). Restriction enzymes, REBASE, Polymerase chain reaction, primer designing, Next Generation Sequencing, application of BioEdit. Genomics: Gene Identification Genome information and special features, coding sequences (CDS), untranslated regions (UTR's), cDNA library, expressed sequence tags (EST), 16S rDNA gene sequencing. Approaches to gene identification; masking repetitive DNA, database search, codon-bias detection, detecting functional sites in the DNA. Internet resources for gene identification. Construction of maps, genetic map, physical map, BLAST. 	15 Hrs
Unit III	Structural BiologyRibose-ring puckering, RNA folding, Ramachandran plot,prediction of α -helix, β -sheet, and 3_{10} -helix, loop modeling, 3-Dstructure validation, molecular docking, protein-ligandinteractions, biophysical aspects of proteins and nucleic acids.Molecular ModelingFunctions of molecular modeling. Molecular mechanics, forcefield, potential energy functions, energy minimization methods,single point calculations, full-geometry optimization,conformational search, , molecular dynamics simulations,molecular modeling packages.	15 Hrs
Unit IV	MicroarraysConcept of microarrays; spotted arrays, oligonucleotide arrays, Applications of microarray technology. Tools and Techniques in proteomics; Isotope Coded Affinity Tags (ICAT), Mass spectroscopy for protein analysis, MALDI-TOF, Electrospray ionization (EST), Tandem mass spectroscopy (MS/MS) analysis; tryptic digestion and peptide fingerprinting (PMF), profiling and diagnostics, drug target discovery.Phylogenetic Analysis Evolution, phylogenetic tree, methods of phylogenetic analysis; tool- Phylip.	15 Hrs

- 1. Introduction to Bioinformatics, (Atwood, T. K. and Parry-Smith, D. J).
- 2. An introduction to Computational Biochemistry. (C. Stain Tsai, A John Wiley and Sons, Inc., publications).
- 3. Developing Bioinformatics Computer Skills. (Cynthia Gibas and Per Jambeck).
- 4. Bioinformatics Methods and Applications Genomics, Proteomics and Drug Discovery. (Rastogi S. C. Mendiratta, and Rastogi P.)
- 5. Bioinformatics, Sequence and Genome Analysis by David Mount, Cold Spring Harbor Laboratory Press, NY, 2004.
- 6. NCBI Web site: <u>http://www.ncbi.nlm.nih.gov</u>

	DSE- 404 A: Nanobiotechnology (CBCS)	60 Hrs
Unit I	Nanotechnology: Concept, definition and history. Nano and Nature: Nanoscopiccolours (Butterfly wings), Bioluminescence (fireflies), Tribology (Gecko's Sticky Feet, Nasturtium Leaf-Lotus effect etc) in nature. The development of nanoscale science: size scale. Classification of nanomaterials: 0D,1D,2D and 3D and types of nanomaterials (QDs, QW, CNT's, Bucky Balls, Nanocompositesetc).	15 Hrs
Unit II	Visualization and manipulation tools, Microscopy: Optical, electron (SEM, TEM), SPM (STM, AFM) Optical Tweezers. Inorganic nanoparticles: chemical, physical and biological methods of inorganic nanoparticle synthesis, Biological systthesis nanoparticles using bacteria, fungi and plants. Introduction to types of nanomaterials, metal nanoparticles, metal oxide nanoparticles, composites, polymer nanoparticles. .Application of inorganic nanoparticles, Biological applications of inorganic nanoparticles.	15 Hrs
Unit III	 Introduction to biological nanoparticles and their applications: Exosomes, lipoproteins, ferritin, magnetite viruses. Biological nanomotors, protein assemblies: Kinesin and dynein, cilia. Bacterial flagella: structure and function; nanomotor. Ion channels: nanopores of high specificity. Bioinspirednanomaterials: DNA and peptide based. Interaction between biomolecules and nanoparticle surfaces. 	15 Hrs

Unit IV	Nanomedicine: Applications of nanoscience in biology. Concept of disease, their causes, molecular and cellular progression of key diseases including infectious, inherited diseases, immunological diseases and cancer. Approaches to developing nanomedicines. Various kinds of nanosystems in use. Nanodrug delivery/administration, nano-devices for drug delivery and theranostics.Introduction to the potentials applications and challenges of nanomedicine.15 Hrs

Suggested reading:

- 1. Nanotechnology :Technology Revolution of 21st Century by RakeshRathi, published by S. Chand.
- 2. Introduction to Nanoscience, by Stuart Lindsay.
- 3. Introduction to Nanomaterials and nanotechnology by Vladimir Pokropivny, RynnoLohmus, Irina Hussainova, Alex Pokropivny and Sergey Vlassov
- 4. Nanomaterials by A.K. Bandyopadhyay; New Age International Publishers.
- 5. Nanotechnology by Mark Ratner and Daniel Ratner, Pearson Education.
- 6. Nano Essentials- T.Pradeep/TMH
- 7. Bharat Bhusan, "Springer Handbook of Nanotechnology", springer, Newyork, 2007
- 8. Hari Singh Nalwa, "Encyclopedia of Nanotechnology", USA 2011
- 9. James A. Schwarz, Cristian I. Contescu, Karol Putyera, "Dekker encyclopedia of nanoscience and nanotechnology" CRC Press, 2004.
- 10. Charles P. Poole Jr. and Franks. J. Qwens (2003) Introduction to Nanotechnology. John Wiley and Sons.
- 11. Ehud Gazit (2007) Plenty of Room for Biology at the Bottom: An Introduction to Bionanotechnology. Imperial college Press
- 12. Bharat Bhushan (2007) Springer Handbook of Nanotechnology. Springer Verlag.
- 13. Challa S., S. R. Kumar, J. H. Carola (2006) Nanofabrication towards biomedical application: Techniques, tools, Application and impact. John Wiley and sons.
- 14. Robert A. FreitasJr (2003) Nanomedicine, Vol. I: Basic Capabilities.
- 15. Neelina H. Malsch (2005) Biomedical Nanotechnology. Taylor and Francis. CRC press.
- 16. Patrick Boisseau, Marcel Lahmani (2009) Nanoscience: Nanobiotechnology and Nanobiology. Springer Publishers.
- 17. Ralph S. Greco, Fritz B. Prinz, R. Lane Smith (Editors) (2004) Nanoscale Technology in Biological Systems. CRC Press
- 18. Harry F. Tibbals (2010) Medical Nanotechnology and Nanomedicine. CRC Press

	DSE 404 B : Fermentation Technology- II	60 Hrs	
Unit I	Pharmaceutical BiotechnologyManufacturing by fermentative process and uses of Solvents –Ethanol, beer, wine, rum, whisky, butanol, Organic acids – Citricacid, Acetic acid, Lactic acid, Amino acids – 1-glutamic acid, 1-lysine, Extracellular enzymes – Amylase, protease, lipase, Renin,Glucose isomerase, Vitamins – Vitamin B group, Extracellularpolysaccharides – Xanthan, pullulan, Antibiotics – B lactam -Penicillin, Anticancer – Adriamycin, Semisynthetic antibiotics.	15 Hrs	
Unit II	Therapeutic proteins : Interferron, Monoclonal Antibodies L- asparginase, Hormones – insulin, Single cell protein, Single cell oil, Bioplastics : Polyhydroxyalkonates, Biogas, Flavor enhancers – MSG, Biotrasnformation reactions, Ergot alkaloids, Flavor and fragrances	15 Hrs	
Unit III	Environmental Biotechnology 13 Bioremediation, Role of microbe in petroleum industry, 14 Bioleaching / Biomining, Biotechnological applications of 14 extremophiles, Waste treatment, Microbial desulphurisation of 16 coal Food Biotechnology Cheese, Sauerkaut, edible mushroom, Baker's yeast 14		
Unit IV	Animal Tissue CultureMedia requirements, preparation of medium and sterilization techniques. Advantages and disadvantages of natural and synthetic media. Culture methods – hanging drop, suspension and monolayer culture. Behavior and characteristics of cells in culture. Primary and established cell lines, characteristics of transformed cells. Methods of cell preservation. Organ culture – clot grid, chorioallantonic and ocular culture, Applications of animal tissue culture – vaccines, cell biology, drug testing, medical applications, etc., Stem cells and their applications in medicine and tissue engineering	15 Hrs	

- Moo-Young M. ed. (1985) Comprehensive Biotechnology vol: III & IV. Pergamon press. N.Y.
 Rehm H.J and Reed G eds. (1985) Biotechnology vol: III VIII. VCH, Basel.
 Ratledge C and Kristiansen B eds. (2001) Basic Biotechnology 2nd ed. Cambridge Univ. Press. Cambridge.

- 4 Klegerman, M.E and Groves M.J. (1992) Pharmaceutical Biotechnology: Fundamentals and Essentials. Interpharm Press Ltd. Buffalo Grove IL.
 Reed G. Ed. Prescott and Dunn's Industrial Microbiology . 4th edition CBS Pub. New Delhi.
 Culture of Animal Cells by Ian Freshney.

	CCPR- 405: Laboratory Course and Project(120 Hrs) 200 Marks		
	Part A		
1.	Isolation of genomic DNA from plants/yeast		
2.	Restriction digestion and analysis of DNA fragments by agarose gel		
	electrophoresis.		
3.	Establishment of Molecular markers (RAPD/RFLP).		
4.	Identification of bacterial/fungal isolates by 16S rDNA/18S rDNA		
	amplification and sequencing.		
5.	Isolation of genomic DNA from environmental samples		
6.	Construction of 16S rDNA library, sequencing of clones and sequence analysis.		
7.	Preparation of competent cells (chemical or electro)		
8.	Separation of RNA by denaturing gel electrophoresis		
9.	Identification and characterization of proteins resolved on 2D PAGE		
10.	Isolation and purification of chlorophyll from plant material		
11.	Chemical synthesis of gold and silver nanoparticles and their characterization		
12.	Preparation of nanoparticles using biological source		
13.	Preparation of nanoparticles using bacterial cells/fungi/plant extract, its		
	extracellular proteins and characterization		
14	Preparation of various metal nanoparticles for the study of their biological		
	activity		
15	Evaluation of antimicrobial activity of metal nano particles		
16	SDS PAGE gel shift assay for study of nanoparticle- biomolecule assembly		
	Part B (100 Marks)		
	Research Project		

- 1. Practical Biochemistry: An Introductory Course by Fiona Frais.
- 2. Methods in Enzymology Vol. I by S.P.Colowick and N.O.Kaplaneds.
- 3. Basic Biochemical Methods 2nded by R.R.Alexander and J.M.Griffith
- 4. Biochemical Methods 2nd ed. by S.Sadasivam and A. Manickam.
- 5. Hawk's Physiological Chemistry ed. by Bernard L Oser.
- 6. A Textbook of Practical Biochemistry by David Plummer.
- 7. Laboratory Manual in Biochemistry by S. Jayaraman.
- 8. Developing Bioinformatics computer skills Cynthia Gibas and Per Jambeck
- 9. An introduction to Computational Biochemistry- C. Stan Tsai John Wiley and Sons, Inc.
- 10. publications.
- 11. Microsystems and nanotechnology, Springer, by Z. Zhou, Z. L. Wang and L. Lin
- 12. Charles P. Poole Jr. and Franks. J. Qwens (2003) Introduction to Nanotechnology. John Wiley and Sons.
- 13. Bharat Bhushan (2007) Springer Handbook of Nanotechnology. Springer Verlag.

	SEC 406 : Mandatory Non-CGPA compulsory Skill Enhancement Course	
Unit I	Syllabus and nature of paper will be opted as per committee decision.	15 Hrs
Unit II		15 Hrs

GE: 407: Mandatory Non-CGPA Generic Elective Course

Sr. No.	Generic Elective Title of the paper	Credits assigned to the paper	Semester for which course is offered	Eligibility
1.	'Gardening and Nursery management techniques'	2	IV	Masters in any stream

Unit No.	Topics	No. of
		Lectures/Hours
	Introduction of nursery and gardening	
	Soil and its preparation, Plant Propagation- Introduction, Definition, types (Natural and Artificial)	

I	 Study of Nurseries - Definition and types with suitable examples of Plants, Annuals, Perennials, climbers, shrubs and trees. Establishment of Nursery, Gardening Techniques, Cultivation Practices – Cultivation of Vegetables (Onion, Tomato, Brinjal) Disease and Pest management 	15 L
II	Practical demonstration Study of different tools and equipment's used Garden and Nursery, Preparation of soil mixture and demonstration, Study of propagation methods, Preparation of Vertical Garden, Hanging Baskets, Study of fertilizers etc.	15 L